Algorithms training - DP on trees. 算法训练(二) 树上DP.

咩系树上DP? 其实都没咩可解释嘅. 即系在树上嘅每个节点表示状态, 然后推导状态转移方程.
正经D讲, 套路就是先”递”后”归”, 在”归”的过程中进行状态转移. 所以一般都是后序遍历的模板.

二叉树中的最大路径和

https://leetcode.cn/problems/binary-tree-maximum-path-sum/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxPathSum(self, root: Optional[TreeNode]) -> int:
ans = -inf

def dfs(root: Optional[TreeNode]) -> int:
nonlocal ans

if root is None:
return 0

left = max(0, dfs(root.left))
right = max(0, dfs(root.right))

ans = max(ans, left + right + root.val)
return max(left, right) + root.val

dfs(root)

return ans

二叉树的直径

https://leetcode.cn/problems/diameter-of-binary-tree/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
ans = 0

def dfs(root: Optional[TreeNode]) -> int:
nonlocal ans
if root is None:
return 0

left = dfs(root.left)
right = dfs(root.right)

ans = max(ans, left + right + 1)
return max(left, right) + 1
dfs(root)
return ans - 1 # 链的长度 = 节点数目 - 1

打家劫舍III

https://leetcode.cn/problems/house-robber-iii/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
@cache
def dfs(root: Optional[TreeNode]) -> (int, int):
if root is None:
return 0, 0

l_rob, l_nrob = dfs(root.left)
r_rob, r_nrob = dfs(root.right)

rob = l_nrob + r_nrob + root.val # 偷
nrob = max(l_rob, l_nrob) + max(r_rob, r_nrob) # 唔偷

return rob, nrob


return max(dfs(root))